3.9.100 \(\int \frac {\sqrt {a+b \cos (c+d x)} (B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [900]

3.9.100.1 Optimal result
3.9.100.2 Mathematica [A] (verified)
3.9.100.3 Rubi [A] (verified)
3.9.100.4 Maple [B] (warning: unable to verify)
3.9.100.5 Fricas [F]
3.9.100.6 Sympy [F]
3.9.100.7 Maxima [F]
3.9.100.8 Giac [F]
3.9.100.9 Mupad [F(-1)]

3.9.100.1 Optimal result

Integrand size = 44, antiderivative size = 351 \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} B \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}+\frac {2 \sqrt {a+b} (b B-a (B-C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}-\frac {2 \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d} \]

output
2*(a-b)*B*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+ 
c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)* 
(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+2*(B*b-a*(B-C))*cot(d*x+c)*EllipticF((a 
+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a 
+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/ 
d-2*C*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^ 
(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^( 
1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d
 
3.9.100.2 Mathematica [A] (verified)

Time = 13.21 (sec) , antiderivative size = 273, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-2 (a+b) B \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 (b (B-C)+a (B+C)) \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+4 b C \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+\frac {2 B (a+b \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}}{d \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[(Sqrt[a + b*Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/C 
os[c + d*x]^(5/2),x]
 
output
(-2*(a + b)*B*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 
 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 
 2*(b*(B - C) + a*(B + C))*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x] 
)/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + 
b)/(a + b)] + 4*b*C*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + 
 b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b) 
/(a + b)] + (2*B*(a + b*Cos[c + d*x])*Tan[(c + d*x)/2])/Sqrt[Cos[c + d*x]] 
)/(d*Sqrt[a + b*Cos[c + d*x]])
 
3.9.100.3 Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 351, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {3042, 3508, 3042, 3470, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)} (B+C \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (B+C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3470

\(\displaystyle \int \frac {a B+(b B+a C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+b C \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a B+(b B+a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+b C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3288

\(\displaystyle \int \frac {a B+(b B+a C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3477

\(\displaystyle (b B-a (B-C)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+a B \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle (b B-a (B-C)) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a B \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3295

\(\displaystyle a B \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} (b B-a (B-C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 \sqrt {a+b} (b B-a (B-C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {2 B (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}\)

input
Int[(Sqrt[a + b*Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + 
 d*x]^(5/2),x]
 
output
(2*(a - b)*Sqrt[a + b]*B*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + 
d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (2*S 
qrt[a + b]*(b*B - a*(B - C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[ 
c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*( 
1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - 
(2*Sqrt[a + b]*C*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[ 
c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*( 
1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d
 

3.9.100.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3470
Int[(((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]])/((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[B*(d 
/b^2)   Int[Sqrt[b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Int[(A* 
c + (B*c + A*d)*Sin[e + f*x])/((b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f* 
x]]), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 
3.9.100.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(952\) vs. \(2(327)=654\).

Time = 4.76 (sec) , antiderivative size = 953, normalized size of antiderivative = 2.72

method result size
parts \(\text {Expression too large to display}\) \(953\)
default \(\text {Expression too large to display}\) \(1161\)

input
int((B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(5/2), 
x,method=_RETURNVERBOSE)
 
output
-2*B/d*(-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos( 
d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot( 
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+ 
1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2 
+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b 
+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^ 
2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-c 
sc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2) 
*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a 
+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+csc(d*x 
+c)^3*(1-cos(d*x+c))^3*a-csc(d*x+c)^3*(1-cos(d*x+c))^3*b+a*(csc(d*x+c)-cot 
(d*x+c))+b*(csc(d*x+c)-cot(d*x+c)))*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc( 
d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)* 
(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x 
+c)^2*b*(1-cos(d*x+c))^2+a+b)/(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x 
+c)^2*(1-cos(d*x+c))^2+1))^(3/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)-2*C/d*( 
(a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(EllipticF(cot(d*x+c)-csc(d*x 
+c),(-(a-b)/(a+b))^(1/2))*a-EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b)) 
^(1/2))*b+2*b*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))/( 
a+cos(d*x+c)*b)^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c))/...
 
3.9.100.5 Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^ 
(5/2),x, algorithm="fricas")
 
output
integral((C*cos(d*x + c) + B)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), 
 x)
 
3.9.100.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (B + C \cos {\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*(a+b*cos(d*x+c))**(1/2)/cos(d*x+c 
)**(5/2),x)
 
output
Integral((B + C*cos(c + d*x))*sqrt(a + b*cos(c + d*x))/cos(c + d*x)**(3/2) 
, x)
 
3.9.100.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^ 
(5/2),x, algorithm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)/cos 
(d*x + c)^(5/2), x)
 
3.9.100.8 Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^ 
(5/2),x, algorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)/cos 
(d*x + c)^(5/2), x)
 
3.9.100.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \]

input
int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c 
 + d*x)^(5/2),x)
 
output
int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(1/2))/cos(c 
 + d*x)^(5/2), x)